heat.dndarray

Provides HeAT’s core data structure, the DNDarray, a distributed n-dimensional array

Module Contents

class DNDarray(array: torch.Tensor, gshape: Tuple[int, Ellipsis], dtype: heat.core.types.datatype, split: int | None, device: heat.core.devices.Device, comm: Communication, balanced: bool)

Distributed N-Dimensional array. The core element of HeAT. It is composed of PyTorch tensors local to each process.

Parameters:
  • array (torch.Tensor) – Local array elements

  • gshape (Tuple[int,...]) – The global shape of the array

  • dtype (datatype) – The datatype of the array

  • split (int or None) – The axis on which the array is divided between processes

  • device (Device) – The device on which the local arrays are using (cpu or gpu)

  • comm (Communication) – The communications object for sending and receiving data

  • balanced (bool or None) – Describes whether the data are evenly distributed across processes. If this information is not available (self.balanced is None), it can be gathered via the is_balanced() method (requires communication).

__prephalo(start, end) torch.Tensor

Extracts the halo indexed by start, end from self.array in the direction of self.split

Parameters:
  • start (int) – Start index of the halo extracted from self.array

  • end (int) – End index of the halo extracted from self.array

get_halo(halo_size: int) torch.Tensor

Fetch halos of size halo_size from neighboring ranks and save them in self.halo_next/self.halo_prev.

Parameters:

halo_size (int) – Size of the halo.

__cat_halo() torch.Tensor

Return local array concatenated to halos if they are available.

__array__() numpy.ndarray

Returns a view of the process-local slice of the DNDarray as a numpy ndarray, if the DNDarray resides on CPU. Otherwise, it returns a copy, on CPU, of the process-local slice of DNDarray as numpy ndarray.

astype(dtype, copy=True) DNDarray

Returns a casted version of this array. Casted array is a new array of the same shape but with given type of this array. If copy is True, the same array is returned instead.

Parameters:
  • dtype (datatype) – Heat type to which the array is cast

  • copy (bool, optional) – By default the operation returns a copy of this array. If copy is set to False the cast is performed in-place and this array is returned

balance_() DNDarray

Function for balancing a DNDarray between all nodes. To determine if this is needed use the is_balanced() function. If the DNDarray is already balanced this function will do nothing. This function modifies the DNDarray itself and will not return anything.

Examples

>>> a = ht.zeros((10, 2), split=0)
>>> a[:, 0] = ht.arange(10)
>>> b = a[3:]
[0/2] tensor([[3., 0.],
[1/2] tensor([[4., 0.],
              [5., 0.],
              [6., 0.]])
[2/2] tensor([[7., 0.],
              [8., 0.],
              [9., 0.]])
>>> b.balance_()
>>> print(b.gshape, b.lshape)
[0/2] (7, 2) (1, 2)
[1/2] (7, 2) (3, 2)
[2/2] (7, 2) (3, 2)
>>> b
[0/2] tensor([[3., 0.],
             [4., 0.],
             [5., 0.]])
[1/2] tensor([[6., 0.],
              [7., 0.]])
[2/2] tensor([[8., 0.],
              [9., 0.]])
>>> print(b.gshape, b.lshape)
[0/2] (7, 2) (3, 2)
[1/2] (7, 2) (2, 2)
[2/2] (7, 2) (2, 2)
__bool__() bool

Boolean scalar casting.

__cast(cast_function) float | int

Implements a generic cast function for DNDarray objects.

Parameters:

cast_function (function) – The actual cast function, e.g. float or int

Raises:

TypeError – If the DNDarray object cannot be converted into a scalar.

collect_(target_rank: int | None = 0) None

A method collecting a distributed DNDarray to one MPI rank, chosen by the target_rank variable. It is a specific case of the redistribute_ method.

Parameters:

target_rank (int, optional) – The rank to which the DNDarray will be collected. Default: 0.

Raises:
  • TypeError – If the target rank is not an integer.

  • ValueError – If the target rank is out of bounds.

Examples

>>> st = ht.ones((50, 81, 67), split=2)
>>> print(st.lshape)
[0/2] (50, 81, 23)
[1/2] (50, 81, 22)
[2/2] (50, 81, 22)
>>> st.collect_()
>>> print(st.lshape)
[0/2] (50, 81, 67)
[1/2] (50, 81, 0)
[2/2] (50, 81, 0)
>>> st.collect_(1)
>>> print(st.lshape)
[0/2] (50, 81, 0)
[1/2] (50, 81, 67)
[2/2] (50, 81, 0)
__complex__() DNDarray

Complex scalar casting.

counts_displs() Tuple[Tuple[int], Tuple[int]]

Returns actual counts (number of items per process) and displacements (offsets) of the DNDarray. Does not assume load balance.

cpu() DNDarray

Returns a copy of this object in main memory. If this object is already in main memory, then no copy is performed and the original object is returned.

create_lshape_map(force_check: bool = False) torch.Tensor

Generate a ‘map’ of the lshapes of the data on all processes. Units are (process rank, lshape)

Parameters:

force_check (bool, optional) – if False (default) and the lshape map has already been created, use the previous result. Otherwise, create the lshape_map

create_partition_interface()

Create a partition interface in line with the DPPY proposal. This is subject to change. The intention of this to facilitate the usage of a general format for the referencing of distributed datasets.

An example of the output and shape is shown below.

__partitioned__ = {

‘shape’: (27, 3, 2), ‘partition_tiling’: (4, 1, 1), ‘partitions’: {

(0, 0, 0): {

‘start’: (0, 0, 0), ‘shape’: (7, 3, 2), ‘data’: tensor([…], dtype=torch.int32), ‘location’: [0], ‘dtype’: torch.int32, ‘device’: ‘cpu’

}, (1, 0, 0): {

‘start’: (7, 0, 0), ‘shape’: (7, 3, 2), ‘data’: None, ‘location’: [1], ‘dtype’: torch.int32, ‘device’: ‘cpu’

}, (2, 0, 0): {

‘start’: (14, 0, 0), ‘shape’: (7, 3, 2), ‘data’: None, ‘location’: [2], ‘dtype’: torch.int32, ‘device’: ‘cpu’

}, (3, 0, 0): {

‘start’: (21, 0, 0), ‘shape’: (6, 3, 2), ‘data’: None, ‘location’: [3], ‘dtype’: torch.int32, ‘device’: ‘cpu’

}

}, ‘locals’: [(rank, 0, 0)], ‘get’: lambda x: x,

}

Return type:

dictionary containing the partition interface as shown above.

__float__() DNDarray

Float scalar casting.

See also

flatten()

fill_diagonal(value: float) DNDarray

Fill the main diagonal of a 2D DNDarray. This function modifies the input tensor in-place, and returns the input array.

Parameters:

value (float) – The value to be placed in the DNDarrays main diagonal

__getitem__(key: int | Tuple[int, Ellipsis] | List[int, Ellipsis]) DNDarray

Global getter function for DNDarrays. Returns a new DNDarray composed of the elements of the original tensor selected by the indices given. This does NOT redistribute or rebalance the resulting tensor. If the selection of values is unbalanced then the resultant tensor is also unbalanced! To redistributed the DNDarray use balance() (issue #187)

Parameters:

key (int, slice, Tuple[int,...], List[int,...]) – Indices to get from the tensor.

Examples

>>> a = ht.arange(10, split=0)
(1/2) >>> tensor([0, 1, 2, 3, 4], dtype=torch.int32)
(2/2) >>> tensor([5, 6, 7, 8, 9], dtype=torch.int32)
>>> a[1:6]
(1/2) >>> tensor([1, 2, 3, 4], dtype=torch.int32)
(2/2) >>> tensor([5], dtype=torch.int32)
>>> a = ht.zeros((4,5), split=0)
(1/2) >>> tensor([[0., 0., 0., 0., 0.],
                  [0., 0., 0., 0., 0.]])
(2/2) >>> tensor([[0., 0., 0., 0., 0.],
                  [0., 0., 0., 0., 0.]])
>>> a[1:4, 1]
(1/2) >>> tensor([0.])
(2/2) >>> tensor([0., 0.])
__int__() DNDarray

Integer scalar casting.

is_balanced(force_check: bool = False) bool

Determine if self is balanced evenly (or as evenly as possible) across all nodes distributed evenly (or as evenly as possible) across all processes. This is equivalent to returning self.balanced. If no information is available (self.balanced = None), the balanced status will be assessed via collective communication.

Parameters force_check : bool, optional

If True, the balanced status of the DNDarray will be assessed via collective communication in any case.

is_distributed() bool

Determines whether the data of this DNDarray is distributed across multiple processes.

__key_is_singular(key: any, axis: int, self_proxy: torch.Tensor) bool
__key_adds_dimension(key: any, axis: int, self_proxy: torch.Tensor) bool
item()

Returns the only element of a 1-element DNDarray. Mirror of the pytorch command by the same name. If size of DNDarray is >1 element, then a ValueError is raised (by pytorch)

Examples

>>> import heat as ht
>>> x = ht.zeros((1))
>>> x.item()
0.0
__len__() int

The length of the DNDarray, i.e. the number of items in the first dimension.

numpy() numpy.array

Returns a copy of the DNDarray as numpy ndarray. If the DNDarray resides on the GPU, the underlying data will be copied to the CPU first.

If the DNDarray is distributed, an MPI Allgather operation will be performed before converting to np.ndarray, i.e. each MPI process will end up holding a copy of the entire array in memory. Make sure process memory is sufficient!

Examples

>>> import heat as ht
T1 = ht.random.randn((10,8))
T1.numpy()
__repr__() str

Computes a printable representation of the passed DNDarray.

ravel()

Flattens the DNDarray.

See also

ravel()

Examples

>>> a = ht.ones((2,3), split=0)
>>> b = a.ravel()
>>> a[0,0] = 4
>>> b
DNDarray([4., 1., 1., 1., 1., 1.], dtype=ht.float32, device=cpu:0, split=0)
redistribute_(lshape_map: torch.Tensor | None = None, target_map: torch.Tensor | None = None)

Redistributes the data of the DNDarray along the split axis to match the given target map. This function does not modify the non-split dimensions of the DNDarray. This is an abstraction and extension of the balance function.

Parameters:
  • lshape_map (torch.Tensor, optional) – The current lshape of processes. Units are [rank, lshape].

  • target_map (torch.Tensor, optional) – The desired distribution across the processes. Units are [rank, target lshape]. Note: the only important parts of the target map are the values along the split axis, values which are not along this axis are there to mimic the shape of the lshape_map.

Examples

>>> st = ht.ones((50, 81, 67), split=2)
>>> target_map = torch.zeros((st.comm.size, 3), dtype=torch.int64)
>>> target_map[0, 2] = 67
>>> print(target_map)
[0/2] tensor([[ 0,  0, 67],
[0/2]         [ 0,  0,  0],
[0/2]         [ 0,  0,  0]], dtype=torch.int32)
[1/2] tensor([[ 0,  0, 67],
[1/2]         [ 0,  0,  0],
[1/2]         [ 0,  0,  0]], dtype=torch.int32)
[2/2] tensor([[ 0,  0, 67],
[2/2]         [ 0,  0,  0],
[2/2]         [ 0,  0,  0]], dtype=torch.int32)
>>> print(st.lshape)
[0/2] (50, 81, 23)
[1/2] (50, 81, 22)
[2/2] (50, 81, 22)
>>> st.redistribute_(target_map=target_map)
>>> print(st.lshape)
[0/2] (50, 81, 67)
[1/2] (50, 81, 0)
[2/2] (50, 81, 0)
__redistribute_shuffle(snd_pr: int | torch.Tensor, send_amt: int | torch.Tensor, rcv_pr: int | torch.Tensor, snd_dtype: torch.dtype)

Function to abstract the function used during redistribute for shuffling data between processes along the split axis

Parameters:
  • snd_pr (int or torch.Tensor) – Sending process

  • send_amt (int or torch.Tensor) – Amount of data to be sent by the sending process

  • rcv_pr (int or torch.Tensor) – Receiving process

  • snd_dtype (torch.dtype) – Torch type of the data in question

resplit_(axis: int = None)

In-place option for resplitting a DNDarray.

Parameters:

axis (int) – The new split axis, None denotes gathering, an int will set the new split axis

Examples

>>> a = ht.zeros((4, 5,), split=0)
>>> a.lshape
(0/2) (2, 5)
(1/2) (2, 5)
>>> ht.resplit_(a, None)
>>> a.split
None
>>> a.lshape
(0/2) (4, 5)
(1/2) (4, 5)
>>> a = ht.zeros((4, 5,), split=0)
>>> a.lshape
(0/2) (2, 5)
(1/2) (2, 5)
>>> ht.resplit_(a, 1)
>>> a.split
1
>>> a.lshape
(0/2) (4, 3)
(1/2) (4, 2)
__setitem__(key: int | Tuple[int, Ellipsis] | List[int, Ellipsis], value: float | DNDarray | torch.Tensor)

Global item setter

Parameters:
  • key (Union[int, Tuple[int,...], List[int,...]]) – Index/indices to be set

  • value (Union[float, DNDarray,torch.Tensor]) – Value to be set to the specified positions in the DNDarray (self)

Notes

If a DNDarray is given as the value to be set then the split axes are assumed to be equal. If they are not, PyTorch will raise an error when the values are attempted to be set on the local array

Examples

>>> a = ht.zeros((4,5), split=0)
(1/2) >>> tensor([[0., 0., 0., 0., 0.],
                  [0., 0., 0., 0., 0.]])
(2/2) >>> tensor([[0., 0., 0., 0., 0.],
                  [0., 0., 0., 0., 0.]])
>>> a[1:4, 1] = 1
>>> a
(1/2) >>> tensor([[0., 0., 0., 0., 0.],
                  [0., 1., 0., 0., 0.]])
(2/2) >>> tensor([[0., 1., 0., 0., 0.],
                  [0., 1., 0., 0., 0.]])
__setter(key: int | Tuple[int, Ellipsis] | List[int, Ellipsis], value: float | DNDarray | torch.Tensor)

Utility function for checking value and forwarding to :func:__setitem__

Raises:

NotImplementedError – If the type of value ist not supported

__str__() str

Computes a string representation of the passed DNDarray.

tolist(keepsplit: bool = False) List

Return a copy of the local array data as a (nested) Python list. For scalars, a standard Python number is returned.

Parameters:

keepsplit (bool) – Whether the list should be returned locally or globally.

Examples

>>> a = ht.array([[0,1],[2,3]])
>>> a.tolist()
[[0, 1], [2, 3]]
>>> a = ht.array([[0,1],[2,3]], split=0)
>>> a.tolist()
[[0, 1], [2, 3]]
>>> a = ht.array([[0,1],[2,3]], split=1)
>>> a.tolist(keepsplit=True)
(1/2) [[0], [2]]
(2/2) [[1], [3]]
__torch_proxy__() torch.Tensor

Return a 1-element torch.Tensor strided as the global self shape. Used internally for sanitation purposes.

__xitem_get_key_start_stop(rank: int, actives: list, key_st: int, key_sp: int, step: int, ends: torch.Tensor, og_key_st: int) Tuple[int, int]